Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Quan-Xuan Zhang,^a Qing-Bin Xue^a* and Liang-Yi Qie^b

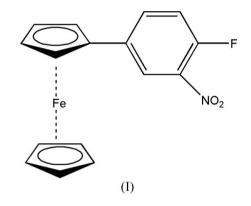
^aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and ^bSchool of Medicine, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail: qingbin_xue2006@yahoo.com.cn

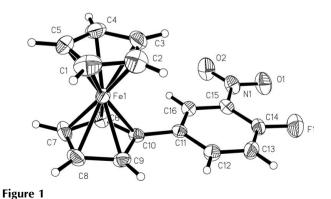
Key indicators

Single-crystal X-ray study T = 446 KMean σ (C–C) = 0.004 Å R factor = 0.037 wR factor = 0.100 Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


(4-Fluoro-3-nitrophenyl)ferrocene

The title compound, $[Fe(C_5H_5)(C_{11}H_7FNO_2)]$, crystallizes with the 4-fluoro-3-nitrophenyl unit nearly coplanar with the cyclopentadienyl ring to which it is attached.


Received 18 December 2006 Accepted 18 December 2006

Comment

Compounds containing ferrocene building blocks have been widely studied owing to their potential uses in catalysis, materials science, molecular devices and hydrometallurgy (Hayashi *et al.*, 1989; Slone *et al.*, 1997). We report here the crystal structure of (I).

In (I) (Fig. 1), all bond lengths and angles are normal (Allen *et al.*, 1987; Gallagher *et al.*, 1997). The Fe \cdots Cg1 and Fe \cdots Cg2 distances are 1.651 (3) Å and 1.649 (2) Å, respectively, and the Cg1 \cdots Fe \cdots Cg2 angle is 177.9 (3)°, where Cg1 and Cg2 are the centroids of the unsubstituted and substituted Cp rings, respectively. The 4-fluoro-3-nitrophenyl unit C11–C16/F1/N1/O1/O2 is coplanar with the cyclopentadienyl ring (C6–C10) to which it is attached, the largest deviation from the combined mean plane being 0.063 (2) Å for atom C7.

© 2007 International Union of Crystallography All rights reserved

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

metal-organic papers

Although the nitro group is well established as a powerful acceptor of $C-H\cdots O$ hydrogen bonds (Sharma & Desiraju, 1994), there are no intermolecular contacts in (I) less than the sum of the van der Waals radii; in particular, there are no significant $C-H\cdots O$ interactions.

Experimental

The title compound was synthesized by the reaction of ferrocene (0.01 mol) with a freshly diazotized solution of 4-fluoro-3-nitroaniline (0.01 mol) in dilute sulfuric acid (15 ml), followed by chromatography on alumina, using dichloromethane-petroleum ether (1:1 v/v) as eluent. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethyl acetate-dichloromethane (1:1 v/v) solution at room temperature over a period of one week.

Z = 4

 $D_x = 1.596 \text{ Mg m}^{-3}$

 $0.45 \times 0.40 \times 0.39 \; \text{mm}$

Mo Ka radiation

 $\mu = 1.13 \text{ mm}^{-1}$

T = 446 (2) K

Block, red

Crystal data

 $[Fe(C_{5}H_{5})(C_{11}H_{7}FNO_{2})]$ $M_{r} = 325.12$ Monoclinic, $P2_{1}/n$ a = 10.196 (2) Å b = 12.905 (3) Å c = 10.639 (2) Å $\beta = 104.882$ (3)° V = 1352.9 (5) Å³

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.631, T_{\max} = 0.667$ 6918 measured reflections 2510 independent reflections 2119 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 25.5^{\circ}$ Refinement

-	
Refinement on F^2	w = 1/[a]
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 0
$wR(F^2) = 0.100$	where
S = 1.05	$(\Delta/\sigma)_{\rm ma}$
2510 reflections	$\Delta \rho_{\rm max}$ =
190 parameters	$\Delta \rho_{\min} =$
H-atom parameters constrained	

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 \\ &+ 0.3244P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.001 \\ \Delta\rho_{max} = 0.37 \ e \ \text{\AA}^{-3} \\ \Delta\rho_{min} = -0.26 \ e \ \text{\AA}^{-3} \end{split}$$

All H atoms were placed in calculated positions, with C–H = 0.93 or 0.98 Å, and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1999); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Gallagher, J. F., Ferguson, G., Ahmed, S. Z., Glidewell, C. & Lewis, A. (1997). Acta Cryst. C53, 1772–1775.

Hayashi, T., Yamamoto, A., Ito, Y., Nishioka, E., Miura, H. & Yanagi, K. (1989). J. Am. Chem. Soc. 111, 6301–6311.

Sharma, C. V. K. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2345–2352.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Slone, C. S., Mirkin, C. A., Yap, G. P. A., Guzei, I. A. & Rheingold, A. L. (1997). J. Am. Chem. Soc. 119, 10743–10753.